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The “Deep 7” bottomfish complex, which consists of six snapper and one grouper species, is a complex that carries high economic 
and cultural importance to the islands of Hawaii. These bottomfish have been monitored through the National Oceanic and 
Atmospheric Administration Pacific Islands Fisheries Science Center’s Deep 7 fishery-independent surveys since 2016. These sur-
veys use underwater stereo camera systems that produce hundreds of thousands of images that must be annotated by human 
analysts in order to generate species-specific, size-structured abundance estimates. We developed a citizen science project, called 
“OceanEYEs,” as a means to effectively process this imagery. A beta test was conducted to determine the accuracy of citizen sci-
ence annotations in comparison to expert annotators. Our results suggest that aggregated citizen scientist data can achieve accu-
racy levels approaching that of expert annotators, which has the potential to improve image annotation efficiency and produce 
large volumes of high-quality training data to improve machine learning algorithms.

BACKGROUND
Commercial and recreational fishing have been important 

components of the Hawaiian culture and economy for hun-
dreds of years (Haight et al.  1993). A complex of six deep-
water snappers and one grouper species, commonly known 
as the Hawaii “Deep 7” (Western Pacific Regional Fishery 
Management Council 2010; Figure 1), are of central impor-
tance and have been under a formal federal management plan 
since 2005, when it was determined that the stock was experi-
encing overfishing (Moffitt et al. 2006).

The National Oceanic and Atmospheric Administration 
(NOAA), in partnership with the state of Hawaii, is respon-
sible for actively managing the Deep 7 to ensure fishery sus-
tainability. Formal stock assessments are routinely conducted 
by NOAA’s Pacific Islands Fisheries Science Center (PIFSC; 
Langseth et al. 2018) to determine the status of the Deep 7 
relative to certain management-determined reference points. 
These assessments require reliable estimates of life history 
demographics, fishery catch, and population abundance. In 
2016, to improve the abundance metrics used in the stock 
assessment, the PIFSC initiated a Bottomfish Fishery-
Independent Survey in Hawaii (BFISH; Richards et al. 2016).

The BFISH is conducted annually from July to November. 
The survey domain (Figure 2) spans 600 km from Ni′ihau to 
the Big Island of Hawaii, comprising approximately 6,500 km2 
and covering the 75–400-m depth range around all eight main 
Hawaiian islands (Richards et al.  2016). The survey domain 
is gridded at 500 m, with each grid assigned to habitat-based 
design strata. Each year, a subset of survey grids is selected for 
sampling using a stratified random experimental design and 
one of two calibrated (Richards et al.  2016) survey gears— 
research fishing or the Modular Optical Underwater Survey 
System (Amin et al. 2017)—is assigned to each survey grid.

Within each assigned grid, two replicate 15-min camera 
samples are collected. With a typical survey comprising up to 
100 camera grids, nearly 50 h of stereo video, comprising 2.2 
million image pairs may be generated. It typically takes a team 
of three human annotators 2–3 months to process this volume 
of data using the MaxN methodology outlined by Cappo 
et al.  (2006). With a limited analyst pool, this methodology 
is not scalable to future projected data volumes, nor does it 
allow for the image-by-image bounding box-style annotation 
required to train novel machine learning algorithms properly 
(Richards et al.  2019). Nor is it conducive to investigating 
alternative enumeration metrics, such as MeanCount, which 
have been shown to be desirable in some domains (Schobernd 
et al. 2013; Campbell et al. 2015).

With the widespread use and success of citizen science 
platforms (Kosmala et al.  2016) for processing imagery 
across a wide range of domains (Raddick et al. 2010; Cox et 
al. 2015), PIFSC has developed a citizen science tool, called 
“OceanEYEs,” using the Zooniverse platform, a citizen sci-
ence web resource created by the Citizen Science Alliance 
which hosts some of the largest and most successful citizen 
science projects (Simpson et al. 2014).

PROJECT DESCRIPTION
The OceanEYEs project was developed to allow volunteer 

citizen scientists to help annotate underwater images from the 
BFISH survey, enabling researchers to investigate new enumer-
ation methods, and to produce high-quality training data for 
machine learning algorithms. Volunteers are guided through 
the classification workflow, in which a series of tasks are com-
pleted that provide data on fish presence/absence, fish count, 
fish position, and species identification. A variety of tools 
are provided to help users before and during the workflow, 

Figure 1. The main Hawaiian Islands “Deep-7” bottomfish complex: (A) Onaga Etelis coruscans, (B) Ehu Etelis carbunculus,  
(C) Kalekale Pristipomoides sieboldii, (D) Opakapaka P. filamentosus, (E) Gindai P. zonatus, (F) Hapu’upu’u Hyporthodus quernus, 
and (G) Lehi Aphareus rutilans. Artwork credit: Les Hata, Hawaii Department of Land and Natural Resources.
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including a tutorial on how to complete the workflow, a field 
guide that provides additional information on each of the 
Deep 7 bottomfish species, and a frequently asked questions 
section that can help users with any additional questions they 
may have regarding the workflow and the project overall.

To measure the usability and effectiveness of the 
OceanEYEs project in collecting high-quality annotation 
data, a test to validate the project was conducted in the sum-
mer of 2019, where users were asked to complete the workflow 
that was developed. This beta test consisted of 100 underwater 
images, with 70 images containing fish and 30 images contain-
ing no fish. A total of 208 users participated in this beta test, 
and each beta test image was annotated by 15 independent 
volunteers, a cutoff  that was determined randomly, before it 
was “retired” from the workflow. Once the beta test was com-
plete, data was extracted and compiled into consensus annota-
tions using a graphical user interface provided by Zooniverse 
and python scripts. These tools required a few parameters to 
conduct the extraction and reduction process, including “eps,” 
a threshold distance between two points, and “counterfrac_
limit,” a limit based on the fraction of classifications made 
for a particular image. Thresholds for these parameters were 
tested by analyzing nine different parameter combinations to 
assess which combination yielded the highest overall accuracy. 
Accuracy of the data was determined by comparing users’ 
annotations to ground truth annotations that were provided 
by a PIFSC expert video analyst.

The four main data criteria of interest—fish presence/
absence data, count data, positional data, and species identi-
fication data—were analyzed sequentially from most to least 

important. The most important criterion was fish presence/
absence data, which was analyzed by organizing inaccuracies 
into two categories: “false positive,” which is when the con-
sensus annotations resulted in no fish present for an image 
when there was actually fish present, and “false negative,” 
which is when consensus annotations resulted in fish being 
present in an image, when there was actually no fish present. 
Results for fish presence/absence data showed false positives 
only occurred in less than 8% of all analyzed photos through-
out the nine parameter combinations and false negatives only 
occurred in less than 1% of the photos analyzed throughout 
all nine parameter combinations.

Count data, the second main criteria of interest, was 
analyzed by assessing the total amount of images that were 
overcounted and the total amount of images that were 
undercounted for each of the nine parameter combinations 
(Table 1). Results for count data showed the highest accuracy 
being associated with an eps parameter of 50 and a counter-
frac_limit parameter of 0.2, which had an overall overcount-
ing of one image and overall undercounting of 15 images, 
equating to an overall accuracy of 84%.

The third criterion of interest, positional data, was ana-
lyzed by visually evaluating the accuracy of the point place-
ment throughout output images that were generated by the 
python scripts (Figure  3). The accuracy of the positional 
data was organized by dividing points into two main catego-
ries: “correct”/“on position” points, which are points that are 
correctly placed on the head and tail of the fish, and “incor-
rect”/“off position” points, which are points that are not 
correctly marked on the head or tail of a fish. Incorrect/off  

Figure 2. The spatial frame of the Bottomfish Fishery-Independent Survey in Hawaii (BFISH) survey extending from Kauai in the 
northwest to the island of Hawaii in the southeast. Inset shows a section of the survey frame in the Maui–Nui region showing 
the 500- × 500-m grid cells classified by habitat–depth strata.
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position points were divided into 2 subcategories: “opposite” 
points, in which the head point is on the tail of a fish or the 
tail point is at the head of a fish, and “rogue” points, which 
are points that are not correctly placed on either the head or 
the tail of the fish (Figure 4). Using this classification scheme, 
results showed that with the optimal parameter combination 
of eps = 50 and counterfrac_limit = 0.2, the overall accuracy 
of positional data was 88.8%.

Species identification data was analyzed by comparing the 
consensus annotation species identification generated by user 
annotations to the ground truth species identification evalu-
ated by the expert video analyst. This data was then summa-
rized into a confusion matrix (Table 2) and then transformed 
as a ratio of correctly identified fish for a particular species 
over the total of the particular species present, excluding 
unmarked fish, to quantitatively evaluate the accuracy of 
the species identifications made from the beta test (Table 3). 
Results for this portion of the beta test analysis showed an 
overall accuracy of around 75.4%.

The overall results for the beta test show that when using 
the optimal parameter combination, fish presence/absence 
data resulted in a 97% accuracy, count data resulted in an 
84% accuracy, an 89% accuracy for positional data, and a 
75% accuracy for species identification data; these accuracies 
average to an 86% accuracy, which is comparable to expert 
annotator accuracy levels.

Since the project has become open to the public, 
OceanEYEs has amassed nearly 2 million annotations span-
ning over 160,000 images with the help of over 10,000 regis-
tered Zooniverse volunteers. Analyses of the annotation data 
gathered since the public launch have shown that the accuracy 
of the annotation data has decreased. This decline in accuracy 
is in part because the beta test intentionally selected images 
to ensure target fish were visible, resulting in fish that were 
more identifiable than typically seen due to their proximity 
to the camera. In contrast, the public launch batches consist 
of photos taken throughout the entire deployment, with fish 

occurring in various positions (e.g., in the distance or camou-
flaged in the substrate). Fish in these configurations could eas-
ily be missed or misidentified since key anatomical features are 
harder to see at a distance. To minimize the impact that fish 
at a distance can have on identification, a new feature is being 
added to the project, in which an additional second photo 
is included in the workflow to assist in spotting these occur-
rences. This second image will enable the users to detect move-
ment, as well as move a fish into a more identifiable position 
(e.g., if  the fish was obstructed by another object or if  the fish 
was positioned straight towards the camera), which may help 
in increasing the accuracy of user annotations. Additionally, a 
new section will be added to the field guide addressing the dif-
ferences between Opakapaka Pristipomoides filamentosus and 
Kalekale P. sieboldii, two Deep 7 bottomfish species that are 
difficult to differentiate. This new section will hopefully serve 
to help increase the accuracy of species identifications made 
by users, especially between these two species.

IMPROVING THE SCIENCE
Artificial intelligence, computer vision, and machine learn-

ing continue to expand into the marine science domain and 
are revolutionizing the way scientists collect and process data. 
The National Marine Fisheries Service and other agencies are 
increasingly turning to camera-based instrumentation to survey 
resource populations. While such sensors greatly increase the 
efficiency of field data collection, much of that efficiency gain 
is lost in the human-based image processing workflow. New 
machine learning methods based on artificial neural networks, 
commonly known as “deep learning” methods, are beginning 
to reduce the human annotation burden, but such methods 
require extensive libraries of human-annotated bounding box-
style training data. With human analysts already fully tasked 
with image processing and data analysis, often using meth-
ods that do not produce frame-by-frame, bounding box-style 
annotations, production of this type of training data often 
remains a significant bottleneck. The Zooniverse platform 

Table 1. Results of beta test fish count data assessed throughout nine parameter combinations, including data on the number of images that 
were overcounted, the number of images that were undercounted, and the total proportion of images that were counted correctly.

eps 50;
cf 0.2

eps 100;
cf 0.2

eps 200;
cf 0.2

eps 50;
cf 0.3

eps 100;
cf 0.3

eps 200;
cf 0.3

eps 50;
cf 0.4

eps 100;
cf 0.4

eps 200;
cf 0.4

Overcounting 1 3 4 1 2 1 0 1 0

Undercounting 15 22 36 21 26 38 28 31 41

Proportion correct 0.84 0.75 0.60 0.78 0.72 0.61 0.72 0.68 0.59

Figure 3. Example of an annotated image output generated from the python scripts. The left image contains annotations that all 
volunteers made for a particular image. The right image contains the associated consensus annotations created from the user 
annotations. Red dots in the image represent head points, blue dots represent tail points, and the different colors for each line 
represent the species identification (i.e., each of the Deep 7 species and “other” fish).
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provides a convenient and easy-to-use interface for citizen sci-
entists to create frame-level, bounding box-style annotations 
quickly and efficiently. These annotations can then be used to 
train machine learning models to continue the transition from 
human to machine-based image processing.

As each image is annotated by 15 independent citizen 
scientists before consensus annotations are generated, a con-
fidence score based on the level of agreement among those 
independent annotators is assigned to each annotation. 
Adjudication and scoring of OceanEYEs annotations against 
professional annotations can be used to define a confidence 
threshold above which annotations are accepted with mini-
mal verification and below which annotations are verified by 
professional annotators. In so doing, the OceanEYEs projects 
can reduce the overall burden on professional annotators and 
increase the overall efficiency of image processing.

Species are currently enumerated from BFISH video data 
using the MaxN method (Cappo et al. 2006). However, alter-
native enumeration metrics, such as MeanCount, have been 
shown to be desirable in some domains (Schobernd et al. 
2013; Campbell et al. 2015). The frame-level annotations pro-
vided by OceanEYEs citizen scientists will allow researchers 
to investigate and compare alternative enumeration metrics to 
determine optimal methods for specific target taxa.

Finally, we hope that the education and outreach pro-
vided through the OceanEYEs platform will help users bet-
ter understand the scientific process and data used to inform 
fisheries management. Current events have, yet again, shown 
the disconnect between the scientific community and the gen-
eral populace. It is our hope that OceanEYEs can serve as 
one small step toward community engagement in the scientific 

process and can catalyze a renewed understanding and appre-
ciation of the scientific process, its results, and implications. 
Effective management action is predicated largely on volun-
tary compliance, which is best achieved through understand-
ing and acceptance.

LESSONS LEARNED/BEST PRACTICES
A variety of supplementary materials were provided to 

help users complete the OceanEYEs workflow, with particu-
lar emphasis on instructions regarding how to mark the fish 
and how to identify each of the Deep 7 target species versus 
other fish. When creating and modifying these materials, we 
learned that it is important to provide information that is edu-
cational and interesting to users, but is also not extraneous as 
to unnecessarily inundate volunteers. For example, one of the 
supplementary materials of focus was the field guide, which 
includes additional information regarding how to identify and 
mark each of the Deep 7 species and other fish found in the 
images. Although it would have been interesting and informa-
tive to include all of the potential fish that could be seen in 
these images in the field guide, having that much information 
would risk oversaturating the volunteers that are simply try-
ing to find the fish they are interested in identifying. Therefore, 
since the target fish for this project are the Deep 7 bottomfish, 
with all other fish considered “other,” we limited the field guide 
to include information on the Deep 7 species as well as any 
other fish that may be misidentified as one of the Deep 7 spe-
cies. This way, volunteers only need to look through a small set 
of photos to find the specific species they may be looking for.

As was mentioned in the Project Description section or this 
article, a beta test was conducted to assess the accuracy and 

Figure 4. Examples of annotation categories created to assess the beta test positional data accuracy. The left image shows 
“correct”/”on position” points, with head points (red dots) and tail points (blue dots) For Peer Review Only correctly placed on 
each fish in the image. The middle image provides an example of “opposite” points, with the head points and tail points on the 
opposite ends of the fish. The right image shows an example of “rogue” points, in which head and tail points are not correctly 
placed on either the head or tail of the fish (points are circled in orange).

Table 2. Confusion matrix of species identifications resulting from beta test. Column values represent “Truth” species identifications recognized 
by a video analyst expert, and row values represent “Predicted” species identifications resulting from the beta test consensus annotation 
output. The row labelled “Missing” represents fish that were unmarked in the consensus annotation output for each of the species of interest. 
Values where the species identifications in the row and column are identical represent the number of times consensus annotations correctly 
identified a particular species present.

Ehu Opakapaka Kalekale Gindai Onaga Lehi Hapuupuu Other

Ehu 11 NA NA NA NA 1 NA NA

Opakapaka NA 20 10 NA NA 1 NA 9

Kalekale NA NA 25 NA NA NA NA 3

Gindai NA NA NA 12 NA NA NA NA

Onaga NA NA NA NA 3 NA NA NA

Lehi NA NA NA NA NA 30 NA 3

Hapuupuu NA NA NA NA NA NA 8 NA

Other NA 5 32 NA 2 9 2 41

Missing 12 NA 6 NA NA NA 2 12
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usability of the annotation data generated from the project. 
The test image set consisted of 100 images, with the majority 
of these images containing fish in them. For these fish images, 
we purposely chose images that contained Deep 7 species, as 
this was the spread of test images we believed would provide 
information on how well users would be able to identify each 
of the target species we were interested in gathering data on. 
After the beta test was conducted, we realized that the selec-
tivity of the images chosen for the beta test may have caused a 
bias that affected the resulting beta test data accuracy, which 
could account for the discrepancy between patterns seen in the 
beta test data versus the public launch data.

Due to the lessons that we learned through the beta test and 
public launch of OceanEYEs, there are a couple key things we 
would recommend to those interested in using citizen science 
in support of fisheries sciences. First, it is important to provide 
volunteers supplementary materials to aid them with the tasks 
you are asking them to perform, and it is especially import-
ant for these supplementary materials to contain informative 
and educational tools that are not extraneous in order to not 
oversaturate volunteers. Secondly, we recommend that a pilot/
beta test be conducted as a means to assess the accuracy of 
the data produced by the citizen science project. Test sets used 
in the pilot/beta test should provide information on the data 
of interest and should also be representative of sets that vol-
unteers will see once the project becomes open to the public.

NEXT STEPS
To ensure a successful citizen science project with sus-

tained participation and solid methods of evaluating progress 
towards accuracy goals, thinking forward with next steps is 
paramount. At each stage of our project, we assess the incom-
ing data and identify ways to improve the annotation process. 
One such method just implemented into the OceanEYEs 
workflow is a toggle feature, which will assist with finding 
fish identifications and counts. This feature utilizes a pair of 
photos that the user can “toggle” between in order to track 
movement between sequential frames, further improving the 
accuracy of the data collected. Including movement into the 
workflow can provide volunteers a way to identify fish far in 
the distance that may have been missed or allow volunteers 

to change the fish position to a suitable angle, increasing the 
possibility of identification.

Another next step planned for the OceanEYEs project is 
to ingest the annotated OceanEYEs data set images into an 
automation software developed to identify fish. In order for 
the artificial intelligence (AI) software to identify our target 
fish, the model will need to have the pipeline train detectors 
and classifiers with target fish already tagged in photos. The 
OceanEYEs citizen science platform is a way to provide the 
AI with a plethora of identified fish photos. After the AI has 
proven to provide accurate results, the program can be used for 
future fish survey missions, allowing for increased deployments 
with rapid data turnaround times. This increase in operations 
and subsequent data sets would allow a more comprehensive 
look into the marine environment, strengthening the stock 
assessment report.
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species identified by the video analyst expert, excluding unmarked 
fish. “Predicted” column values for each of the species represent 
the number of correctly identified fish for a particular species. 
“Predicted/Truth” represents the ratio of the Predicted fishes 
identified over the Truth fishes identified, which is the metric used 
to assess accuracy of species identifications made by the consensus 
annotations.

Truth Predicted
Predicted/

Truth

Ehu 11 11 1

Opakapaka 25 20 0.800

Kalekale 67 25 0.373

Gindai 12 12 1

Onaga 5 3 0.600

Lehi 41 30 0.731

Hapuupuu 10 8 0.800

Other 56 41 0.732
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